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ABSTRACT

This report discusses the techniques and analysis for the precise
reduction of the topocentric and apparent places of stars and artificial
satellites. Included is a full discussion of the method of star constants,
independent day numbers, geocentric parallax, parallactic refraction,
and errors. Also described, in detail, is the analysis necessary for
the real time modeling of the telescope-camera system, its theoretical
basis, and differential reduction procedures. In addition, an original
method for computing the distance of an artificial satellite from two

measurements of position and one of angular velocity is developed.
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I INTRODUCTION

The purpose of this report is three-fold. One aim was the complete
elucidation, through terms of the second-order in small quantities, for
reducing the mean place of a star to its apparent place and thence to
its topocentric place. Another reason was to develop the basis for the
telescope modeling used in the GEODSS Local Astrometric Calibration
Procedure and prepare the way for the utilization of charge coupled
devices or charge injected devices. These two rely on classical photographic
astrometry. In particular, the plate modeling used in both the method
of dependences (Schlesingerl) and the plate overlap technique (Eichornz)
are extended to the real-time problem posed by artificial satellite
reductions. Lastly, the analysis necessary for the recovery of an
artificial satellite's geocentric position from its measured, topocentric
position is presented.

For the most part the material contained herein is a review and
summary of the relevant astronomical literature. Original contributions
are scattered throughout (principally Eqs. (12), § IIIB, § VI, § VIIA).

The epoch-to-epoch reductions of a star's mean place and its cataloged

3, 4). Hence,

mean place have already been completely dealt with (Taff
the initial data are position, proper motion, and annual parallax at the

beginning of the nearest Besselian solar year.



II. MEAN PLACE TO APPARENT PLACE TO TOPOCENTRIC PLACE REDUCTIONS

The reduction procedures now used for the mean place to apparent
place reductions were developed by Bessel. They represent approximations
of the rigorous formulas which retain all second order terms. Their
accuracy is further enhanced by restricting their applicability to time
intervals of *0.5 year duration.

A star's position in the equatorial coordinate system is specified
by its right ascension and declination (i.e., longitude and latitude).
The equatorial coordinate system is specified by its pole (the North
Celestial Pole which is the point on the celestial sphere penetrated by
the continuation of the Earth's axis through the Earth's north pole),
its fundamental circle (the celestial equator which is the great circle
on the celestial sphere described by the projection of the Earth's
equator as seen from the center of the Earth), its zero vertical (half
the great circle through the poles of the celestial equator whose
intersection with the celestial equator marks the zero of the longitudinal
coordinate, i.e., the vernal equinox or the First Point of Aries), its
heliticity (right-handed), and-its epoch. The epoch is denoted by a
phrase such as ''for equator and equinox of 1977.0," etc. One must
prescribe the epoch for both the celestial equator and the vernal equinox
because the equatorial coordinate system is not fixed relative to an
inertial one.

The mean place of a star is denoted by (uo, 60). (The words place

and position are used interchangeably herein). For historical reasons



the values of right ascension and declination found in catalogs (catalog
mean place) include the small effects of elliptic aberration (Taffa).
As the mean place of a star defines that direction in which an observer

situated at the solar system barycenter would view the star,
catalog mean place = mean place + e-terms.

The true place of a star is its solar system barycentric position referred
to the true (i.e., actual at date) equator and equinox. It differs from
the mean place by the effects of precession, proper motion, and nutation.
The apparent place of a star is its geocentric position referred to the
true equator and equinox. It differs from the true place by the effects
of annual aberration and annual parallax. The topocentric place of a
star is its position as determined by an ideal telescope. It differs
from the apparent place by the effects of astronomical refraction,
diurnal aberration, and geocentric parallax.

The two common methods for performing the mean place to apparent
place reduction use either (i) star constants in right ascension (a, b,
¢, d), star constants in declination (a', b', ¢', d'), and Besselian day
numbers (A, B, C, D, E, J, and J'"), or (ii) independent day numbers (f,
g, G, h, H, and 1i). C and D are sometimes referred to as aberrational
day numbers since they are used to correct for annual aberration while
A, B, and E are used to correct for precession and nutation. In addition,
because they represent terms of the second order, J and J' are sometimes

referred to as second-order day numbers. All of these quantities are



tabulated in the American Ephemeris and Nautical Almanac. In the following
A-E, J, J', f, g, h, and i are in seconds of arc and G and H (as well as
right ascension and declination) are in radians. The proper motion in
right ascension () and the proper motion in declination (u') are in
e 9

When all terms of the second order are included the reduction
procedures are of comparable accuracy. However, the method employing
star constants and Besselian day numbers is to be preferred when simultaneously
reducing the positions of several stars to the same instant of time
while the method employing independent day numbers is to be preferred
when reducing the position of a single star for several different times.
Moreover, the latter method is more expeditious when simultaneously
reducing the positions of several stars close together on the celestial
sphere to the same instant of time.

If (o, &) denotes the apparent place and T is the fraction of the

year to (from) the beginning of the nearest Besselian solar year, then

R
]

ao + sinl"[Tu + Aa + Bb + Cc + Dd + E + Jtan2(5O

(1/«) (Cdsece - Dccose)], (la)

+

o + sinl"[Tu + f + gsin(G + ao)tando

+ hsin(H + o )secS + Jtanzd ]| (2a)
o o o



O 1= 60 + sinl"[Tu' + Aa' + Bb' + Cc' + Dd' + J'tanéo
+ (m/x){(Cd'sece - Dc'cose)], (1b)
=6 + sinl"[Tu' + gcos(G + o ) + hcos(H + a )sind
o o o o
. '
+ 1cos(5o + J tanGo], (2b)
where
a = m/n + sina tand , a' = coso , (3a)
o o o
b = cosa tand , b' = -sina , (3b)
o o o
¢ = cosd secl , ¢' = tanccosS - sina sind , (3¢)
o o o o o
d = sina secd , d' = cosa sind , (3d)
o o o o

and 7 (the annual parallax in seconds of arc) has been set equal to zero
(for simplicity) in Eqs. (2). The auxiliary quantities are K = the
constant of aberration (= 20"4958), m = the centennial precession in
right ascension, n = the centennial precession in declination, and € =
the true obliquity of the eliptic. If T denotes the number of tropical

centuries since 1900.0 then,

m = 30792337 + 0518630T 4+ 850 x 107072, (4a)
n = 20047685 - 0"8533T -~ 3"7 x 10 T2, (4b)
e = 23°27'8"26 — 46"845T - 070059T2 + 0"00181T". (4e)



The small difference between the length of a tropical year and a Besselian
solar year (the latter is shorter by 05148T) is negligible.
The independent day numbers are related to the Besselian day number

via

f = (m/n)A + E, i = Ctane, (5a)
gsinG = B, gcosG = A, (5b)
hsinH = C, hcosH = D. (5¢)

The second-order day numbers are calculated (using the * sign when

<
60 N 0) by

J = sinl"[(A * D)sinao + (B & C)cosao][(A i D)cosao
- (B £ C)sina ], (6a)
= sinl'"[gsin(G + ao) * hsin(H + ao)][gcos(c + ao)
* heos(H + a)l, (7a)
J' = -sinl"[(A * D)sina_ + (B * C)cosa_1°/2, (6b)
= -ginl"[gsin(G + ao) * hsin(H + ao)]2/2. (7b)

Finally the time of the start of the Besselian solar year (e.g., the
instant when the right ascension of the fictitious mean sun is 18h40m)

can be computed from the expression



Jan 09813516 + T(249219878 - 09000308T) - [25T] + LPYR, (4d)

where LPYR = 1 if 25T - [25T] = 0, O otherwise. Thus, 1977.0 = Jan
04626, This formula is valid if T € [0.25, 0.99].

As mentioned above these quantities are tabulated in the American
Ephemeris and Nautical Almanac. The dependent variable is (necessarily)
ephemeris time but tables in which the mean sidereal time at Greenwich
is the argument are also included. Since the future relationship between
universal time and ephemeris time can only be deduced from observations
not yet made, the latter tables are not exact. The error induced can't
exceed *0V01 unless |6o] > 84°.

In order to calculate the day numbers one needs to know the time.
The development of accurate clocks, telescopes, and sophisticated reduction
techniques has led to the discovery of irregularities in the Earth's
rotation. Hence, there are three different universal times. UTO is
universal time as deduced directly from observations of the stars and
the fixed, numerical relationship between an interval of universal time
and the corresponding interval of sidereal time (see below). UT1l is UTO
corrected for the motion of the poles (also called polar wandering).

UT1 represents the true angular rotation of the earth and is independent
of the observer's location. UT2 is UT1 corrected for the average seasonal
variations in the Earth's rotation rate (due to polar cap melting,

etc.). However, UT2 has not been freed of secular (i.e., tidal friction)

or other irregular terms. Both the U. S. Naval Observatory and the



National Bureau of Standards have atomic clocks designed to reproduce
UT2. The time they do produce is called coordinated universal time
(UTC) and is distributed by radio station WWV. Announced frequency and
phase offsets keep UTC within +0%1 of UT2.

The measures of mean universal and mean sidereal times are related

via

1 mean sidereal day = 23h56m4§09054 of mean solar time,

1 mean solar day = 24h3m56§55536 of mean sidereal time.
Hence, when both are in the same units
1 mean sidereal day/l mean solar day = 0.9972695664

(= 1/1.0027379093). When the zero point is fixed (usually at OhUT of
Jan Q) these scale factors allow conversion with an accuracy of iO?Ol.
1f more precision is required or an apparent time is needed the equation
of the equinoxes (= the difference between apparent and mean sidereal
time; it's always within il? of 0) must be considered.

Let (N Z

D’ Tu) represent the time of the observation. Here ND >0

is the number of whole days elapsed since Jan 1.0 = OhUT Jan 1. Tu is
UTC, Tue[O, 24h). Then if A is the east longitude of the observer (in
hrs) and Ts(l.O) is the mean sidereal time at OhUT Jan 1, the mean

sidereal time at (N Tu) is given by

D)



T = T_(1.0) + A - 24 4 1.0027379093T  + 0.0657098222N .  (8a)

As an example, for 1977 T_(1.0) = 6 12 7E 107 o A B = T = 0, N_ = 365

the formula yields Ts = 6h41m9§833 while the mean sidereal time at OhUT

Dec 325 1977 1s 6741508855,
To compute the fraction of the year elapsed to (from) the beginning

of the nearest Besselian solar year we proceed in two steps. Let T(1.0)

be the fraction of the year to Jan 1.0. Compute T' via
7' = 1(l1.0) + (ND + Tu/24)/365.2422. (9)

If N, <N (Jul1), T=1. IEN >N (Jul 1), T=1" -1 Thus, at
(3349, o) 1in 1977 ' = [0.537 + (334 + 0/24)]/365.2422 = 0.91593 so
T = =0.08807 since 1977.0 = Jan 09463,

Equation (8a) is useful if Ts(l.O) is known for any year. The mean

sidereal time at OhUT of any calendar date is defined to be
T, = (67387455836 + 86401845542T + 05092972 Jmod (86400°) (8b)

where T denotes the number of Julian centuries of 36525 days which, at
the midnight beginning the day, have elapsed since thUT Jan 0, 1900 at
Greenwich. Hence, to obtain Ts at Jan 1.0, 1977 = OhUT Jan 1, 1977 we
observe that (77 years of length 365 days have elapsed) + (19d for leap
years [1900 was not a leap year]) + (0?5 from thUT to OhUT on Jan O,
1900) = 28124?5. Straightforward substitution into Eq. (8b) yields TS =

67427197 ag noted. above:



Now that we know the instant of time that the observations are to
be made at, we can reduce the apparent place to the topocentric place.
For stars this includes the effects of geocentric parallax, diurnal
aberration, and astronomical refraction. The effects of geocentric
parallax are less than those of annual parallax by = (radius of earth)/1
A.U. Hence, they are universally ignored. The computation of diurnal
aberration requires the observer's geocentric coordinates.

One's geocentric coordinates are geocentric distance, p, in units
of the earth's equatorial radius (6378.160km), geocentric latitude, ¢',
and geocentric longitude, A. One's geodetic coordinates are height
above mean sea level, H, in km, geodetic latitude, ¢, and geodetic

longitude, A. If H = 0 then

psing' = Ssing, pcos¢' = Ccosd, (10a)
tand’ = (1 - £)Ztand, (10b)
A = (10c)
02 = [cos?e + (O - £)*staZe1c?, (10d)

where f is the flattening of the earth (1/f = 298.25) and the auxiliary

quantities S and C are given by

l/C2 = cosz¢ + (1 - f)zsin2¢, (11a)

s = (1 - f)c. (11b)

10



Equations (lla, 11b, 10b, and 10d) may be expressed directly in terms of

f. Through all terms of the fourth order the result is

RS e 5f2/l6 + 7f3/32 + 169f4/1024

(®]
I

B2 = 52D + Z1E ok + 112"/ 32 ] cos

+ [3f2/l6 e 9f3/32 + 77f4/256]c034¢

[5f3/64 + 5f4/32]c036¢ + (35f4/1024)c038¢, (12a)

1 - 3£/2 + 5£2/16 + 3£3/32 + 41£7/1024

S=

_ 182 - £202 — 5E°PadTcos2d

£ (362 /16 = 36° /8% = 19%" (256 ke

= (5f3/64)cos6¢ + (35f4/1024)c088¢, (12b)
pf =4 = [f + £2/2 - f4/4]sinz¢

+ BER )T+ o2 B e leinte

(275 ¢ £ ]eined + (& 5)atngs, (12¢)

1 - £/3 + 5£2/16 + 5£3/32 + 6009£%/1024

©
"

[£/2 - 13£5/64 - 509£%/64]cos2¢

+

[5f2/16 + 5£3/32 — 517£%/256]cosbd

+ [13f3/64 + l3f4/64]c036¢ = (141f4/1024)c038¢. (124)

11



It a correction for H is necessary then it may be approximately

included by rewriting Eq. (10a) as

psing' 6+ H/ae)sin¢, (13a)

pcosd' (c + H/ae)cos¢, (13b)
where a, is the equatorial radius of the earth.
The observer's speed relative to the earth's axis of rotation (due

to the rotation of the earth) is

v = (1 revolution/sidereal day)paecos¢'. (14)

As there are 86164.09054 mean solar seconds in one mean sidereal day
(see above), v = 0.4651028pcos¢'km/sec. Division of v by the speed of
light in vacuo (2.997925 x 10°km/sec) yields v = 07320002pcos$'. The

corrected coordinates (o', §') are given by

H
2
il

o + (vsinl")coshsec§, (15a)

Cn
]

§ + (vsinl'")sinhsin§, (15b)

T_ - o and vsinl" = 1.551416 x 1076,

where h

The last correction is for astronomical refraction and is computed

by

12



§ = &§' + R'cosn',

obs
= 8" + R'secd8'cscz'[sind ~ sind'cosz’'], (16a)
= qa' + R' '
Aps = & R secGostinn R
=o' + R'secS | cscz'cospsinh', (16b)
obs

where h' = TS ~ a', z' is the zenith distance and n' is the parallactic
angle corresponding to (a', §8'). For any right ascension o, declination

§, and geodetic latitude ¢,

cosz = sin¢sind + cos¢cosbSceosh, (17a)
sinzcosn = sgn(¢) [sinpcosd - cosdpsinScosh], (17b)
sinzsinn = cos¢lSinh|, (17¢)
h = TS - 0. (174)

The quantity R' (in radians above, seconds of arc below) is the
astronomical refraction, R, corrected for the local pressure in mbar, P,
and the local temperature in OF, TF'

R' = (0.5020098P)R/ (460 + TF). (18)

The astronomical refraction is the difference between the true and
observed zenith distances (assuming refraction to be the sole cause of

the difference) and may be approximately expressed by

13



(19)

R=2" -2 = R.tanz - R tan3z
(o] (o]

obs 1 bs 2 bs’

where Rl and R2 are constants. The values used here are R1 = 587294,

R2 = 0V0668 and correspond to standard values of (P, TF) = (1015.92mb,
SOOF). Equation (19) is accurate for z' §_75o and includes effects due
to the curvature of the earth.

The fact that only local meteorological conditions affect the
refraction can be simply deduced if the atmosphere is plane-parallel.
Similarly, the leading term in Eq. (19) may be easily derived for a
plane-parallel atmosphere. These results are also valid to first order
since (height of the atmosphere/radius of the earth) is a quantity of
the first order. That the results are valid to the second order too is
known as the theorem of Oriani and Laplace.

We now briefly discuss the accuracy of these procedures. The mean
place to apparent place reduction, using J and J', and restricting
|| to < 0.5 is #0"003 in each coordinate (Porter and Sadler’). The
naglect of geocentric parallax is permissable except at the poles (e.g.,
within 05 of the poles it's still less than *0"01). The astronomical
refraction correction here includes all terms through the second order
and can systematically affect the reductions (because of a poor choice
of R'/R, Rl’ and R2). However, a systematic bias in zenith distance is
easily discovered and corrected for. Finally, one should use the apparent
sidereal time to compute the refraction correction, not the mean sidereal
time. Except for zenith distances so large that Eq. (19) is in doubt,

this produces no appreciable error.

14



ITI. DIFFERENTTAL REDUCTIONS
It should be clear now that a considerable amount of labor is
involved in reducing the position of a star. Even with a modern hand
calculator, it takes 20-30" to perform the reduction to *0"0l. To
reduce N stars, all within a few degrees of each other, special procedures
have been developed in order to minimize what was once hand labor.
These methods have the characteristic that all of the stars are reduced
relative to the same point on the celestial sphere and at the same
instant of time. Hence, these procedures are referred to as differential.
In the age of electronic computers one might question the necessity
or value of analytical devices which shorten routine calculations.
After all, the procedures of § II, applied to each of the N stars individually,
will unquestionably result in greater accuracy and easier programming.
The answer is partly psychological, connected with the esthetics of the
astronomer versus those of the arithmatic registers of a central processing
unit, and partly practical. The practical side deals with the ultimate
accuracy needed, the ability to precisely ascertain truncation and
roundoff error, and the development of widely applicable analytical
tools.
In the remainder of this section N stars occupy a small (2’50) area
on the sky. They are observed nearly simultaneously. When they are
near the celestial poles additional labor is required (cf. § ITIC). The
center of the field occupied by the stars has mean coordinates (<a0>,

<80>) and proper motions (<u>, <u'>) related to those of the stars via

15



<@ > = To /N, <8 > = L8 /N, (20a)
O O O O

<u> = Iu/N, <p'> = Ip'/N. (20b)

The sums in Egqs. (20) extend over all N stars and parallax is neglected.
The mean sidereal time of the reduction, TS, is the midpoint of the
observing interval.
A. Star Constants and Besselian Day Numbers

Consider a position with mean equatorial coordinates (<ao>,
<60>) and a second, nearby one, with mean equatorial coordinates (ao,
60). Let the associated proper motions be (<pu>, <p'>) and (p, n').
Then their apparent right ascensions (declination is treated analogously)

from Eq. (la) are

<a> = <a > + sinl'[Aa(<a >, <6 >) + Bb(<a >, <8 >) + ...
O (o) (o) (o) O

+ T<p>], (21a)

o =o + sinl"[aa(a , § ) + Bb(a , &) + ...
o o’ o o o

+ Tl (21b)

where the explicit dependence on right ascension and declination of the
star constants in right ascension is indicated. 1If Aao = ao - <ao>, Ao

= o - <0>, etc., then

Ao = Ao + sinl"{A[a(a , § ) - a(<a >, <6 >)] + ...
(o) (o] o (o) (o]

+ t[p - <p>13. (22)

16



However,

a(e , 8 ) = a(<o >, <6 >) +93% W) |, 320 ¥) | A5 (23
o’ o o o ax o ay o
< <
( a,>, <8 _>) (<o >, <8 _>)
SO
o~ <> + Aao + pAao + qAGO + TAusinl", (24a)
§ = <6> + AGO + rAao + sAGO + TAu'sinl", (24b)
where Au = y - <u>, Au' = y' - <u'>, and
p = sinl"{[Acos<a > - Bsin<a >]tan<§ >
[0} [0} [0}
- [Csin<a > - Dcos<o >]sec<d >} (25a)
[0} [0} (o]

q = sinl"{[Asin<ao> + Bcos<ao>]sec2<60>

+ [Ccos<a > + Dsin<a >]sec<d >tan<d >

(o] o] [0} [0}

+ 2Jsec2<60>tan<60>}, (255)
r = -sinl"{[Asin<ao> + Bcos<ao>]

+ [Ccos<ao> + Dsin<ao>]sin<60>}, (25¢)
s = —sinl"{CtanEsin<60> + [0sin<ao> - Dcos<ao>]cos<60>

+ 2" sec’<s >} (254)

17




Hence, as long as Aao, AGO are not too large (< 0.1 rad = 5?7), the mean
place of any nearby star can be reduced to its apparent place once the
center of the field has been reduced. As p, q, r, and s only depend on
the position of the center of the field, it is little more labor to
reduce all N stars simultaneously.

B. Independent Day Numbers

The analytical complexities of the differential reduction can

be minimized if independent day numbers are used. This is because,
unlike the star constants, the independent day numbers do not depend on
the position of the center of the field. Thus, proceeding analogously

to the above [and using Eq. (2a) in place of Eq. (la)] we have

<> = <ao> + sinl"[f + gsin(G + <ao>)tan<60> + ...

d w2 (26a)

o =0 + sinl"[f + gsin(G + o Ytand + ...
o o o

+ ], (26b)

Ao = Ao+ sinl"{g[sin(G + o )tanS§ - sin(G + <o >)tan<§ >)
[o] [o] [o] [o] (o]

+ oo+ T[U - <u>1}, (27)

or

18




o = <o> + AOLO + PAOLO + QAGO + TApsinl", (28a)

§ = <&6> + AGO + RAaO + SAGO + TAp'sinl", (28b)
where,

P = sinl"[gcos(G + <ao>)tan<5o> + hcos(H + <a0>)sec<60>], (29a)

Q = sinl'"[gsin(G + <ao>)secz<60> + hsin(H + <ao>)sec<60>tan<60>

+ 2Jtan<60>secz<60>], (29b)
R = -sinl'"[gsin(G + <ao>) + hsin(H + <a0>)sin<6o>], (29¢)
S = sinl"[hcos(H + <ao>)cos<60> - isin<60> + J'sec2<5o>]. (294d)

(638 The Polar Regions

Right ascension and declination form an orthogonal curvilinear
coordinate system, on the celestial sphere, with a non-trivial metric
tensor. Hence, we cannot expect approximate procedures to work throughout
the right ascension, declination ranges. However, (acosS, §) do form a
set of coordinates appropriate everywhere on the celestial sphere.
Wherever cos8<<l (and & = *81° is traditionally the dividing point in
astrometry) it is simpler, and more accurate, to use the direction
cosines (cosacosd8, sinacosd, sind) in place of (&, 8§). Thus, pole star
tables are frequently given in this form. The above reduction can be
extended to the direction cosines (with considerable analytical complexity).
Since we never need to observe artificial satellites this close to the

poles, the results are not presented here.

19



As a general rule, any approximation procedure used in spherical
astronomy deteriorates systematically with declination. Thus, the position
dependence of the second order terms in Eqs. (1) is purely declination,
etc. Hence, one must be aware of systematically biasing one's data
reduction in this manner.

D. Apparent Place To Topocentric Place
Once (<a>, <8>) have been obtained they must be corrected for

diurnal aberration:

<a'> = <a> + (vsinl'")cos<h>sec<§>, (30a)
<§'> = <§> + (vsinl")sin<h>sin<d>, (30b)
<h> = TS = <>, (30c)

The (approximate) differential reduction is obtained from

<a'> + Ao + (vsinl")sec<8>[Aasin<h> + Alcos<h>tan<é>], (31la)

R
b4

O
b4

> <§'> + A§ + (vsinl'")[-Aacos<h>sin<é> + Adsin<h>cos<&8>], (31b)

where, as above, Ao o - <o, etc. The last correction is for refraction,

<6obs> = <§'> + R'cos<n'>, (32a)

< = <q'> Y < >s1 :

aobs> a'> + R'sec aobs sin<n'>, (32b)
and, with Aa' = a' - <a'>, A8§' = §' - <8'>,
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o ~ <q . >+ Aot + IAo' + JAS?, (33a)
obs obs

§ ~ <§ >+ AS' + RAa' + LAS'. (33b)
obs obs

The constants I-L are computed assuming R = Rotanz % [rather than using

ob
Eq. (191, Rc')/R0 = R'/R, and R0 = 58"2 (the error is third-order). The

results are

I = —Ré[l - tan<z'>cos<n'>tan<§'> + tan2<z'>sin2<n'>], (34a)
J = —Rétan<z'>sin<n'>sec<6'>[tan<z'>cos<n'> - tan<d§'>], (34b)
K = —Rétan<z'>sin<n'>cos<6'>[tan<z'>cos<n'> + tan<d8'>], (34¢)
and,
1 2 1 2 1
L = —Ro[l + tan <z'>cos"<n'>]. (34d)

The parallactic angle and zenith distance are computed from Egqs. (17).

Hence, we now have the ability to completely and simultaneously
reduce the positions of N stars (relative to any other position) with
a minimum of computation. We also see that the correction for astronomical
refraction involves the most labor. It is for this reason that, traditionally,
this stage of the reduction was left out. It's effects were absorbed in
the analysis of the photographic plate (see § V). 1In addition, because
K is small, the annual and diurnal aberrations were not accounted for. The

complete reduction is recommended.
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IV. IDEAL ASTRONOMICAL PHOTOGRAPHY

A. Standard Coordinates

Consider the ideal refracting telescope depicted in Fig. 1.

OC is the optical axis of the telescope and GH is the focal plane. The
focal plane, normal to OC, contains a photographic plate. OC intersects
the plate at its center. Produce OC to A where it intersects the celestial
sphere. If there were a star at A its light would be focused at 0 while
a nearby star at B (on the celestial sphere) would have its light focused
at R (on the plate). To determine the relationship between the linear
size of the photographic plate, 2, and the angular distance between the
corresponding points on the sky, L, imagine R to be at the edge of the
plate and the plane RCO to be parallel to the edge of the plate. Then

plane trigonometry in ARCO yields

9 = 2ftanl, (35)

where f is the focal length of the object glass. Hence, from the focal

length and the size of the photographic plate one can compute (in angular

measure) the area of the sky which can be recorded. It is also important

to know the plate scale (= 2L/%) so that a linear separation on the

plate can be directly transformed into an angular separation on the sky.
Again referring to Fig. 1, the plane tangent to the celestial

sphere (also called the plane of the sky) at A is indicated. This plane

is (necessarily) perpendicular to OCA and, hence, parallel to both the

2.2



TANGENT PLANE

TELESCOPE

I
[

C\\ OBJECT GLASS

PHOTOGRAPHIC

< PLATE

Fig. 1. Refracting telescope diagram for astronomical photography. Not

to scale.
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focal plane and the photographic plate. Two stars at I and B are shown
projected onto the tangent plane at K and D. Let <5 0c} = ¢ = <§ ACI.

Then,

tan¢ = 0J/0C = AK/CK, (36)

so that there is a similarity between the configurations of the stellar
images on the plane of the sky and on the photographic plate. If AS',
AR' and 0S, OR define the positive directions for Cartesian axes in the
two planes (note the direction reversal) then coordinates (£', n') on
the tangent plane are related to coordinates (£, n) on the plate by the

scale factor AC/0C, viz.

£' = (Ac/oC)g, n' = (Ac/oC)n. B

The standard coordinates, (&, n), (introduced by Turner6) are measurable.
Just as important, they can be computed from the right ascension and
Jdeclination of the point A (i.e., the point of tangency) and the point
on the celestial sphere, to which they refer. I now demonstrate these
statements.

Figure 2 is a portion of Fig. 1 drawn from a different perspective.
The arc AB is that portion of the great circle through the point of
tangency and the star at B. All radii (of the celestial sphere) connecting

TN
C to points on AB lie in the place of the great circle through A and B
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Fig. 2. Same as Fig. 1 seen from a different perspective.
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and project onto the straight line segment AD (which lies in the tangent
plane). If P is the North Celestial Pole then AP is the meridian for A.
Also drawn are £', n' axes with the right ascension increasing with
increasing £'. Hence, in the figure, B is east of A's meridian. Since
AD lies in the tangent plane it is perpendicular to AC. Similarly, AU
is orthogonal to the great circle arc AP at A. Finally, the dihedral
angle UAD is equal to <} PAB in the spherical triangle PAB. Therefore,
the projection (onto the plane of the sky) of the arcs of great circles
preserves angles. Let/zg\= ¢, <§ BAP = § = ) UAD. Drop perpendiculars
from D to AU (i.e., FD) and from D to AV (i.e., DE). Then, from the

plane right triangles FDA, DEA,

e FD

ADsinf, (38a)

3
1]
=
o
Il

ADcosf. (38b)

Fowever, AD = ACtand so [from Eqs. (36, 37, 38)],

Y
I

ftan¢sind, (39a)

ftandcosH. (39b)

=
1

Since the focal length of the object glass, f, merely serves
to define the linear scale, we may set f = 1 without loss of generality.
To complete the demonstration of the assertions made above, let the

equatorial coordinates (relative to some equator and equinox) of the
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point of tangency be (A, A) and those of the star at B (relative to the
same equator and equinox) be (o, §). Then from the spherical triangle

PAB (in which AP = 90° - A,”BP = 90° - &, <J APB = a - A),

cosd = sindsinA + cosScosAcos(o - A), (40a)

singpsin® = cosdsin(o - A), (40b)

sinpcos® = sindcosA - cosbsinAcos(a - A). (40c)
Hence,

£ = cotdsin(a - A)/[sinA + cot8cosAcos(a - A)],

cosqtan(a - A)sec(q - A), (41a)

[cosA - cot8sinAcos(a - A)])/[sinA + cot8cosAcos(a - A)],

=
I

tan(q - A). (41b)

Cotq = cotbcos(a - A) and q is the declination of that point on the
celestial sphere where the great circle arc drawn from B intersects AP

in a right angle. The inverse relationships are

tan(a - A) = £secA/[1 - ntanAl, (42a)
cot8sin(a - A) = EsecA/[n + tanAl, (42b)
cotScos(a - A) = (1 - ntanA)/[n + tanA]. (42¢)

If |a - A| is small one should use Eq. (42d) in place of Egs. (42b, c).
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/2 (42d)

sind = [sinA + ncosA)/[1 + 52 -+ n2]
It has now been demonstrated that from the (measurable) standard

coordinates plus the equatorial coordinates of the point of tangency
(which was chosen by the observer) one can compute the right ascension
and declination of any other point on the photographic plate. Conversely,
from the equatorial coordinates of the star and the point of tangency
one can predict the standard coordinates of the corresponding image
point on the photographic plate. Before demonstrating the utility (cf.
§ IVB) of this result various series expansions derived from the rigorous

formulas are listed for reference.

(o - A)cosh - (o0 = AY(S - A)sinA + (o - A)3cosA(3coszA -1)/6

Y
R

+ ...,

(a0 - A)cosS + (o - A)3cosé(3c0326 - 1)/6

R

2 (120 - AHEE = B 2B 5 nmg (43a)

8 - A & (Ll ta — K) 2sdn2h & L/ e - B2C8 = K)cos2h

=
R

+ (-3 4+ ...,

R

5 — &y % (LI ~ &) Coin2® % €5 = E) 203 % won s (43b)
and, inversely,
N 3 3
o - A = EsecA + EnsecAtanA - (£7/3)sec™A

+ EnzsecAtanzA B Ser

£sec + (53/6)sec6(sec26 - 3)

R

(€/2)nzsec6 - ... (44a)
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n - (E2/2)tand - (E%/2)nsec?s - n3/3 + ...,

O
1

>
k4

n - (£%/2)tané - B = e = (44b)

R

Finally, note that the convergence of Eqs. (43, 44) deteriorates rapidly

as Iél + 90° and that Iq - A] is always small. To exploit this note

tanq = tanbsec(o - A), (45a)
and,

tan(a - A) = Esecqcos(q - A). (45b)
Hence,

tan(q - A) = tan’[(a - A)/2]sin2q{[1 - tan’[(a - A)/2]cos2q}, (45¢)
-

g A & tantls = A)2]s=172q + (L2 eaa [te = A)JEIEH0AG + «ve, (46)

which is a rapidly converging series, the truncation error being < 0V01 if
la - A] < 30™.
B The Method of Dependences
Let us now see how the above analytical development can be

used. Since only ideal astronomical photography is discussed here,
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sources of error will be glossed over (see § V). However, it should not
surprise the reader to learn that the coordinates measured on the plate,
denoted by (x, y), are not exactly equal to the standard coordinates.
Nonetheless, the assumption that the relationship between their differences

is linear is usually sufficient. Hence, we write (here)

at + bn + c, (47a)

aai
|
»
]

AE + Bn + C. (47b)

=
i

«
]

The constants a, b, ¢, A, B, and C are called plate constants. In
general they should be (and will be) determined by some estimation
procedure such as maXimum likelihood or least squares.

The problem we face is the following: An artificial satellite
and N reference (or comparison) stars have been observed (i.e., photographed).
We know the equatorial coordinates of the tangential point (A, A), and
the equatorial coordinates for all of the stars, {(aj, 6j)}. Hence, for
star j one can compute its standard coordinates, (Ej, nj). We have also
measured the coordinates for the stars, {(xj, yj)}, and for the satellite,
(X, ¥Y). Using a model for the errors we wish to determine the standard
coordinates for the satellite, (Z, H), and thence its equatorial coordinates.

A general procedure to solve this problem was developed by
Schlesingerl. It is called the method of dependences. The minimal case

N = 3 illustrates the essential features of the problem and can also be

(approximately) solved by graphical means. It also leads to the optimal
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configuration of the comparison stars relative to the satellite. For
these reasons we now describe it in some detail.

The situation, on the photographic plate, is illustrated in
while the program

Fig. 3. The reference stars are at § SZ’ and S

1’ 3
object (an artifical satellite here) is at C. If one used Eqs. (47) for

the plate model and knew the plate constants, then it would be a straightforward
matter to compute the satellite's standard coordinates from its measured
coordinates. To avoid actually calculating the plate constants let us

remember that the least squares equations of condition (for &, the

treatment of n follows analogously) are

. - =at, +bn, +c, =1, 2, 3 48
EJ %y aEJ nJ c, j (48)

and, for the artificial satellite,

5= - X = a% + bH + c. (49)

Multipliers Dj’ j =1, 2, 3, called dependences, are introduced such

that

™ w

. Dj(gj - xj) - (E-X) = 0. (50a)

This yields three equations (equivalent to the normal equations of
least squares when the coordinate variances of the reference stars are

equal) for the dependences, viz.

3i:



Sy [18-9-5719 |

i
P
< C
SZ
P
3
Sl
Fig. 3. The exposed photographic plate with reference stars at Sl’ 52,

and S3 and program object at C.
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N o w n o~ w
= =
= 't
(] ]
= 63

I~ W
=}
1
[

(51:a)

(51b)

(51c)

It also follows, from the definition of dependences , that

o~ w
(o)
»
I
>

and

(n

I

>

+
™M w

Now, if the linear plate model, Egs.

(52)

(50b)

(47), is sufficient, then

since the unmodeled terms are of the second order, the dependences will

be determined with sufficient accuracy if the measured coordinates are

*
substituted for the standard coordinates in Eqs. (51). If this is done

then the dependences are given by

1 ) 2 _
X xz x3 X xl x3

Yy, 75 g g

1 N 1 1 1 1

Di; i 1
Xy %5 1 Tz %3
e, g g ¥p Py
1 1 1 1 1 1(53)

*This departure from the usual procedures of least squares analysis implies that
the original estimation problem was not well-posed. See § VI too.
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The last determinant on the right hand side of Eq. (53) is twice the
area of the triangle formed by the reference stars. The other determinants

have analogous interpretations leading to

o area AC8283 . CPl S
= i ’

1 aree A818283 SlPl

- area ACSBSl ) CP2 i
2 area A818283 SZPZ

. area AC8182 ) CP3 o
3 area A818283 S3P3

Hence, the computation of the dependences has been reduced to counting
squares on a piece of graph paper. The satellite's standard coordinates
are then calculated from Eqs. (5la, b) and the problem is solved.

In addition to being a neat labor-saving trick, the geometrical
significance of the dependences, coupled with the theorem that the
center of mass of a plane triangle with a uniform surface density lies
at the intersection of its meridians, shows that the satellite should be
at the '"center of mass' of the reference stars for maximum accuracy. In
the general case of N > 3 one can easily prove this result too (Plummer7)
as long as the stellar coordinate variances are equal (i.e., the stars
have the same ''mass').

To summarize, we now know how to go from the photographic
plate (charge coupled device, charge injected device, etc.) to the sky
and back, and how to arrange matters to achieve the best possible internal

accuracy.
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Vs REAL ASTRONOMICAL PHOTOGRAPHY

The idealized situation considered in § IV will not obtain in
practice. Here I discuss the modeling of the most common and important
sources of error. These can be divided into two groups; those associated
with the measurement of the photographic place (centering error, rotation,
non-perpendicularity of the axes) and those associated with the telescope
(centering error, tilt, incorrect focal length, radial distortion,
decentering distortion, and coma). In addition, the effects caused by
not including astronomical refraction and annual aberration in the
original reduction process are considered too.

Centering Error (Translation)

This is the error caused by a translation of the photographic plate

relative to the measuring device. The differences between the standard

coordinates and the measured coordinates will be

(55a)

a constant

Y
|
b
]
]

=L

(55b)

i
e

a constant

)
|

<«
]

Rotation
If the phcotographic plate is rotated relative to the measuring

device by an angle Y (Y > 0 for a counter clockwise rotation) then,

(1 - cosP)E - nsiny, (56a)

ffaat
1
o]
fl

= Esin) + (1L - cosP)n. (56b)

=)
I

<«
[
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Non-Perpendicularity of the Axes

If the x and y axes are not orthogonal then,

'aa
|
x
]

ntanwa (573)

(1 - secy)n, (57b)

=
|
«
[[§

where Y is the acute angle between the n and y axes (e.g., x = £ - ntany, y
= nsecy).

Centering Error

If the optical axis of the telescope (produced) pierces the sky at
(A +8A, A+ 8A) instead of at (A, A) then the standard coordinates will

be incorrect. From Eqs. (40, 41) the leading terms are

£ - x = cosASA - nsinAdA, (58a)

n -y=08A+ EsinASA. (58b)

If it can be assumed that the net result of all of the other sources of
error can be adequately described by a translation, a rotation, and a

dilation (so that the plate model is of the form

™
I

Ax + By + C, (59a)

A
]

-Bx + Ay + D, (59b)

with |A|>>|B|), then one can simply and rigorously correct for decentering

via
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Ax + By + C + xzcosAGA + xy8A, (60a)

Y
[

-Bx + Ay + D + xycosASA + yZGA. (60Db)

=y
1]

See Eichorn8.
Tilt

If the photographic plate is tilted by an angle w relative to the
focal plane then the relationship between the true distance (L) of an
object from the optical axis and its apparent (measured) distance (L')

is

2/%' = secycos(P - w), (61)

where Y is the angular distance subtended by % at the center of the

object glass, & = ftan. If the angles are small,

L -2 = wT, (62)

so this error is of the second order. 1In terms of the differences

between the standard coordinates and the measured coordinates,

(p&2 + q&n)tanw, (63a)

™Y
|
]
I

(p&n + qnz)tanw, (63b)

=)
1
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